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Outline

1.1. Schematic overview of the process and connection with previous wSchematic overview of the process and connection with previous worksorks

2.2. Motivations and synergies of Membrane Reactor and Syngas CoolersMotivations and synergies of Membrane Reactor and Syngas Coolers
•• “Dry” syngas → Syngas coolers → Increase efficiency“Dry” syngas → Syngas coolers → Increase efficiency
•• 2 free parameters: 2 free parameters: -- Hydrogen Recovery Factor (HRF)Hydrogen Recovery Factor (HRF)

-- Steam to Carbon ratio (S/C)Steam to Carbon ratio (S/C)

3.3. Construction of the “HRFConstruction of the “HRF--S/C space”S/C space”

4.4. Movements in this space to obtain different plant configurationsMovements in this space to obtain different plant configurations (low S/C)(low S/C)

5.5. Determine final plant configurationsDetermine final plant configurations

6.6. Present thermodynamic and economic performancesPresent thermodynamic and economic performances



Coal-to-hydrogen: Schematic process
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Coal-to-hydrogen plants: past works
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Motivations

HH22O + CO ↔ COO + CO ↔ CO22 + H+ H22

CONVENTIONAL:CONVENTIONAL:
“WET” syngas required for high “WET” syngas required for high 
HH22 productionproduction

IDEA:IDEA:
Relative “DRY” syngas allowed Relative “DRY” syngas allowed 
by continuous Hby continuous H22 permeationpermeation

PUSH the reactionPUSH the reaction PULL the reactionPULL the reaction

Syngas Coolers adoption  Syngas Coolers adoption  
and potential for improved and potential for improved 
energy efficiency energy efficiency 

WaterWater--gasgas--shiftshift

Quench Cooling good match to Quench Cooling good match to 
WGS but relatively inefficientWGS but relatively inefficient
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NOTE: NOTE: 
•• Steam injection: Steam injection: 
→→ to set Steamto set Steam--toto--carboncarbon
→→ to regulate TITto regulate TIT

•• 2 Raffinate turbine (RT) types adopted:2 Raffinate turbine (RT) types adopted:
→→ UnUn--cooled turbine 850cooled turbine 850ººCC
→→ Steam blade cooled turbine 1250Steam blade cooled turbine 1250ººCC

Steam to 
set S/C
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At high HRF or high S/C the 
optimal TIT is not achievable 
because raffinate LHV is low
(Un-cooled turbine case drawn)

2nd Practical limit → TURBINE
At high HRF or high S/C the 
raffinate LHV is too low to 
achieve optimal TIT 
(Un-cooled turbine case drawn)
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Constructing (Hydrogen Recovery Factor)-(Steam to Carbon) space
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that recovered steam be used 
mainly to cool RT combustor 



Operating Range

50

60

70

80

90

100

0.5 1 1.5 2 2.5 3
Steam-to-Carbon Ratio

H
R

F 
(%

)

QC

SC-C

Moving in an (Hydrogen Recovery Factor)-(Steam to Carbon) space

TIT 850˚C

TIT 1250˚C

Cooled Turbine CASE



Operating Range

50

60

70

80

90

100

0.5 1 1.5 2 2.5 3
Steam-to-Carbon Ratio

H
R

F 
(%

)

QU

SC-U

SC-C

Moving in an (Hydrogen Recovery Factor)-(Steam to Carbon) space

SC-PSA

Final plant configurations 
for comparison



Syngas Coolers & Membrane Reactor Synergies

•• Lower water content (S/C) Lower water content (S/C) 
in the Membrane Reactor in the Membrane Reactor 
increases the hydrogen mole increases the hydrogen mole 
fraction and its partial fraction and its partial 
pressure. Increase in pressure. Increase in 
membrane performance membrane performance 
(25% with respect to initial (25% with respect to initial 
quench case)quench case)
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SteamSteam--toto--CarbonCarbon

H2 SeparationH2 Separation

COCO22 Removal Removal 
EfficiencyEfficiency

Effective Effective 
Efficiency* (LHV)Efficiency* (LHV)

Net Power Net Power 
Production (MW)Production (MW)

Hydrogen Hydrogen 
Production (MWth)Production (MWth)

Turbine TypeTurbine Type

Syngas Cooling Syngas Cooling 
TypeType

Results: Plant configurations thermodynamic performance 

112.382.38

MembraneMembraneMembraneMembrane

100%100%100%100%

60%60%59.6%59.6%

--4.24.2--11.511.5

1088108810911091

UnUn--CooledCooledUnUn--CooledCooled

Syngas Syngas 
CoolersCoolersQuench Quench 

Efficiency increase is NOT Efficiency increase is NOT 
as expected…as expected…

* Effective system efficiency = LHV H* Effective system efficiency = LHV H22 output  / LHV (coal input output  / LHV (coal input –– coal saved**)coal saved**)
** Coal saved based on IGCC with CO2 capture, 36.8% LHV efficien** Coal saved based on IGCC with CO2 capture, 36.8% LHV efficiencycy
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SteamSteam--toto--CarbonCarbon

H2 SeparationH2 Separation

COCO22 Removal Removal 
EfficiencyEfficiency

Effective Effective 
Efficiency* (LHV)Efficiency* (LHV)

Net Power Net Power 
Production (MW)Production (MW)

Hydrogen Hydrogen 
Production (MWth)Production (MWth)

Turbine TypeTurbine Type

Syngas Cooling Syngas Cooling 
TypeType

Results: Plant configurations thermodynamic performance 

112.382.38

MembraneMembraneMembraneMembrane

100%100%100%100%

60%60%59.6%59.6%

--4.24.2--11.511.5

1088108810911091

UnUn--CooledCooledUnUn--CooledCooled

Syngas Syngas 
CoolersCoolersQuench Quench 
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Capital* (15% of TCR)Capital* (15% of TCR)

H2 SeparationH2 Separation

Hydrogen CostHydrogen Cost
($/kg)($/kg)

COCO22 Removal Removal 
EfficiencyEfficiency

Carbon Disposal* (at Carbon Disposal* (at 
5$/mt CO5$/mt CO22))

Turbine TypeTurbine Type

Syngas Cooling TypeSyngas Cooling Type

Results: Plant configurations economic performance 

0.740.740.590.59

MembraneMembraneMembraneMembrane
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* H* H22 Cost Components ($/kg HCost Components ($/kg H22))
** CO** CO22 emission (at 100 $/emission (at 100 $/mtmt C)C)



Conclusions

• Membrane reactor characteristic of “pulling” the water gas shiftMembrane reactor characteristic of “pulling” the water gas shift reaction reaction 
allows the employment of syngas coolers; it is therefore possiblallows the employment of syngas coolers; it is therefore possible to explore e to explore 
low S/C configurations with increased efficiency.low S/C configurations with increased efficiency.

•• Membrane performance increases for low water content (S/C~1).Membrane performance increases for low water content (S/C~1).

•• UnUn--cooled turbine performance is NOT influenced by S/C variations.cooled turbine performance is NOT influenced by S/C variations.

•• Cooled turbine is well matched with low water content without rCooled turbine is well matched with low water content without requiring equiring 
low values of HRF. Syngas coolerslow values of HRF. Syngas coolers--Membrane reactorMembrane reactor--Cooled turbine Cooled turbine 
configuration has the best thermodynamic performance.configuration has the best thermodynamic performance.

•• The economics show that these solutions are slightly not competThe economics show that these solutions are slightly not competitive. The itive. The 
increase in performance does not offset the higher capital cost.increase in performance does not offset the higher capital cost. Key issues: Key issues: 
syngas coolers cost & membrane permeability performance.syngas coolers cost & membrane permeability performance.

Two stage high pressure gasification Two stage high pressure gasification 
Fired tube heat exchanger (cheaper)Fired tube heat exchanger (cheaper)


	Main Menu
	Participants Listing
	Plenary Session Presentation Listing
	Poster Presentations
	Technical Sessions Listing


